Washtenaw Community College Comprehensive Report

WAF 126 Introduction to Welding Processes II Effective Term: Spring/Summer 2025

Course Cover

College: Advanced Technologies and Public Service Careers Division: Advanced Technologies and Public Service Careers **Department:** Welding and Fabrication **Discipline:** Welding and Fabrication **Course Number:** 126 Org Number: 14600 Full Course Title: Introduction to Welding Processes II Transcript Title: Intro to Weld Processes II Is Consultation with other department(s) required: No Publish in the Following: College Catalog, Time Schedule, Web Page Reason for Submission: Three Year Review / Assessment Report **Change Information: Outcomes/Assessment Objectives/Evaluation** Rationale: Change outcomes to better define the scope of the students work. **Proposed Start Semester:** Winter 2024 Course Description: In this course, students will continue their study of welding theory and vocabulary, and will be introduced to the following welding processes: Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW) and Flux Core Arc Welding (FCAW). Multiple weld joints are covered in the flat (1F/G) and horizontal (2F/G) positions on plate and sheet metal.

Course Credit Hours

Variable hours: No Credits: 2 Lecture Hours: Instructor: 15 Student: 15 Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

<u>Requisites</u>

Prerequisite WAF 109 minimum grade "C"; allow concurrent enrollment

General Education

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University Other :

Student Learning Outcomes

1. Recognize and apply welding vocabulary.

Assessment 1

Assessment Tool: Outcome-related questions on the written quizzes and exam Assessment Date: Winter 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 80% of students will score 80% or higher. Who will score and analyze the data: Departmental faculty

2. Recognize and interpret welding theory.

Assessment 1

Assessment Tool: Outcome-related questions on the written exam Assessment Date: Winter 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 80% of students will score 80% or higher. Who will score and analyze the data: Departmental faculty

3. Perform a groove, lap, tee, and corner weld in the flat and horizontal position on carbon steel with the SMAW process.

Assessment 1

Assessment Tool: SMAW welded samples

Assessment Date: Winter 2025

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in meeting the D1.1 AWS welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

4. Perform a groove, lap and tee, and corner weld in the flat and horizontal position on carbon steel with the GMAW process.

Assessment 1

Assessment Tool: GMAW welded samples Assessment Date: Winter 2025 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All curricunet.com/washtenaw/reports/course_outline_HTML.cfm?courses_id=11604

How the assessment will be scored: The welds will be scored as pass or fail in meeting the AWS D1.1 welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

5. Perform a groove, lap, tee, and corner weld in the flat or horizontal position on carbon steel with the FCAW process.

Assessment 1

Assessment Tool: FCAW welded samples

Assessment Date: Winter 2025

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in meeting the D1.1 AWS welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Recall and demonstrate proper safety measures with arc welding equipment.
- 2. Properly set up arc welding equipment for use.
- 3. Weld a groove joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 4. Weld a lap joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 5. Weld a tee joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 6. Weld a corner joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 7. Weld a groove joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 8. Weld a lap joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 9. Weld a tee joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 10. Weld a groove joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 11. Weld a lap joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 12. Weld a tee joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 13. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the SMAW, GMAW, FCAW processes.
- 14. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the GMAW process.
- 15. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the FCAW process.
- 16. Weld a corner joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 17. Weld a corner joint in the flat and horizontal positions with the FCAW process on carbon steel plate.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Alexander Pazkowski	Faculty Preparer	Aug 14, 2023
Department Chair/Area Director:		
Glenn Kay II	Recommend Approval	Aug 16, 2023
Dean:		
Jimmie Baber	Recommend Approval	Aug 17, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Jan 10, 2025
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Jan 22, 2025
Vice President for Instruction:		
Brandon Tucker	Approve	Jan 30, 2025

Washtenaw Community College Comprehensive Report

WAF 126 Introduction to Welding Processes II Effective Term: Winter 2022

Course Cover

College: Advanced Technologies and Public Service Careers Division: Advanced Technologies and Public Service Careers Department: Welding and Fabrication Discipline: Welding and Fabrication Course Number: 126 Org Number: 14600 Full Course Title: Introduction to Welding Processes II Transcript Title: Intro to Weld Processes II Is Consultation with other department(s) required: No Publish in the Following: College Catalog , Time Schedule , Web Page Reason for Submission: Three Year Review / Assessment Report Change Information:

Outcomes/Assessment

Rationale: The current assessment outcomes 3-5 are being updated to match the final welds in the course. The students are given a choice of which position to complete their final welds. This is a total of 9 welds to score and assess at the end of the class. The way these outcomes are currently written, it doubles the number of welds to be scored and documented for assessment. Eighteen is unnecessary, nine is enough to evaluate student performance and for a department to manage collaboration between all sections.

Proposed Start Semester: Fall 2021

Course Description: In this course, students are introduced to the following welding processes: Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW) and Flux Core Arc Welding (FCAW). Multiple weld joints are covered in the flat (1F/G) and horizontal (2F/G) positions on plate and sheet metal.

Course Credit Hours

Variable hours: No Credits: 2 Lecture Hours: Instructor: 15 Student: 15 Lab: Instructor: 45 Student: 45 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 Student: 60 Repeatable for Credit: NO Grading Methods: Letter Grades Audit Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

<u>College-Level Reading and Writing</u>

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

WAF 109 minimum grade "C"; allow concurrent enrollment

General Education

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University Other :

Student Learning Outcomes

1. Recognize and apply welding vocabulary.

Assessment 1

Assessment Tool: Outcome-related questions on the written exam Assessment Date: Fall 2024 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 80% of students will score 80% or higher. Who will score and analyze the data: Departmental faculty

2. Recognize and interpret welding theory.

Assessment 1

Assessment Tool: Outcome-related questions on the written exam Assessment Date: Fall 2024 Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All How the assessment will be scored: Answer key Standard of success to be used for this assessment: 80% of students will score 80% or higher. Who will score and analyze the data: Departmental faculty

3. Perform a groove, lap and tee weld in the flat or horizontal position on carbon steel with the SMAW process.

Assessment 1

Assessment Tool: SMAW welded samples

Assessment Date: Fall 2024

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in meeting the D1.1 AWS welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

4. Perform a groove, lap and tee weld in the flat or horizontal position on carbon steel with the GMAW process.

Assessment 1

Assessment Tool: GMAW welded samples Assessment Date: Fall 2024 Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in meeting the AWS D1.1 welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

5. Perform a groove, lap and tee weld in the flat or horizontal position on carbon steel with the FCAW process.

Assessment 1

Assessment Tool: FCAW welded samples

Assessment Date: Fall 2024

Assessment Cycle: Every Three Years

Course section(s)/other population: All

Number students to be assessed: All

How the assessment will be scored: The welds will be scored as pass or fail in meeting the D1.1 AWs welding code.

Standard of success to be used for this assessment: 80% of students will create passing welds in accordance with AWS D1.1 code.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Recall and demonstrate proper safety measures with arc welding equipment.
- 2. Properly set up arc welding equipment for use.
- 3. Weld a groove joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 4. Weld a lap joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 5. Weld a tee joint in the flat and horizontal positions with the SMAW process on carbon steel plate.
- 6. Weld a groove joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 7. Weld a lap joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 8. Weld a tee joint in the flat and horizontal positions with the GMAW process on carbon steel sheet metal and plate.
- 9. Weld a groove joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 10. Weld a lap joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 11. Weld a tee joint in the flat and horizontal positions with the FCAW process on carbon steel plate.
- 12. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the SMAW, GMAW, FCAW processes.
- 13. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the GMAW process.
- 14. Perform a surfacing weld in the flat and horizontal positions on carbon steel plate with the FCAW process.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	<u>Action</u>	Date
Faculty Preparer:		
Amanda Scheffler	Faculty Preparer	Aug 19, 2021
Department Chair/Area Director:		
Bradley Clink	Recommend Approval	Aug 19, 2021
Dean:		
Jimmie Baber	Recommend Approval	Aug 22, 2021
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Oct 27, 2021
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Oct 28, 2021
Vice President for Instruction:		
Kimberly Hurns	Approve	Oct 29, 2021
Kimberly Hurns	Approve	Oct 29, 2021